當前位置:維知科普網 >

歷史

> 偏導數的幾何意義是什麼

偏導數的幾何意義是什麼

用垂直於y軸的平面y=y0截曲面z=f(x,y)得截線,這截線上任一點f(x0,y0)在平面y=y0內的切線對x軸的斜率就是pz/px|(x0,y0)。在一元函式中,導數就是函式的變化率。

對於二元函式研究它的“變化率”,由於自變數多了一個,情況就要複雜的多。

偏導數的幾何意義是什麼

在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。在這裡我們只學習函式 f(x,y) 沿著平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。偏導數的表示符號為:∂。偏導數反映的是函式沿座標軸正方向的變化率。

設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域D 內一點。把 y 固定在 y0而讓 x 在 x0有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。偏導數如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f’x(x0,y0)或。

函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。

在一元函式中,導數就是函式的變化率。對於二元函式的“變化率”,由於自變數多了一個,情況就要複雜的多。在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。

在這裡我們只學習函式 f(x,y) 沿著平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。偏導數的表示符號為:∂。偏導數反映的是函式沿座標軸方向的變化率。 當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。

如果函式 f(x,y) 在域 D 的每一點均可導,那麼稱函式 f(x,y) 在域 D 可導。此時,對應於域 D 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 D 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

偏導數的幾何意義是什麼?

和導數的幾何意義一樣,只不過更有針對性。一元函式的切線都是相對x軸而言的。

二元的z對x的偏導數 代表的是曲線z=f(x,yo)在(x0,y0)處偏向x軸的切線的斜率z對y的偏導同理。

偏導的幾何意義

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

中文名偏導數外文名Partial derivative別名導數表示式f'x(x0,y0)提出者Marquis de Condorcet快速導航定義求法幾何意義引入在一元函式中,導數就是函式的變化率。

對於二元函式的“變化率”,由於自變數多了一個,情況就要複雜的多。在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。在這裡我們只學習函式 f(x,y) 沿著平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。偏導數的表示符號為:∂。

偏導數反映的是函式沿座標軸正方向的變化率。定義x方向的偏導設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域D 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。y方向的偏導同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。

求法當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 D 的每一點均可導,那麼稱函式 f(x,y) 在域 D 可導。此時,對應於域 D 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 D 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。

簡稱偏導數。按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。幾何意義表示固定面上一點的切線斜率。偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。

高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。注意:f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函式再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。

偏導數、偏微分以及全微分的幾何意義是什麼?

意義:偏導數的幾何意義是在某點相對於x或y軸的影象的切線斜率,而全微分是各個偏微分之和。微分在數學中的定義:由函式B=f(A),得到A、B兩個數集,在A中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。

微分是函式改變數的線性主要部分。

微積分的基本概念之一。在微分方面,十七世紀人類也有很大的突破。費馬(Fermat)在一封給羅貝瓦(Roberval)的信中,提及計算函式的極大值和極小值的步驟,而這實際上已相當於現代微分學中所用,設函式導數為零,然後求出函式極點的方法。另外,巴羅(Barrow)亦已經懂得透過「微分三角形」(相當於以dx、dy、ds為邊的三角形)求出切線的方程,這和現今微分學中用導數求切線的方法是一樣的。

由此可見,人類在十七世紀已經掌握了微分的要領。

二元函式偏導數的幾何意義是什麼?

二元函式:f(x,y) 當給定一個y的值c不變之後f(x,c) 就變成了一元函式,記為u(x)此時偏導數: ∂f/∂x 在(x,c)上的值就是du/dx 的值!因此偏導數∂f/∂x的幾何意義就和一階導數du/dx的幾何意義是一樣的(如瞬時變化率...)!這相當於用y=c的一個平面去截一個二維曲面得到一條曲線。同樣∂f/∂y的幾何意義相當於用平面x=C擷取得到一條曲線v(y)。

如果想判斷一座山峰東西南北坡哪個方向比較陡峭或平緩就可以用偏導數的值的大小來確定!當然最好用方向導數來判斷。

數學中好多概念都可以在自然界、各行各業、生活當中找到鮮明的解釋。一旦深入掌握這些概念,就能激發出創造性。

偏導數是什麼?它和導數有什麼區別?

偏導數是將一元函式的導數推廣到多元函式,我們知道,導數是函式的區域性性質,函式在一點的導數描述了這個函式在這一點附近的變化率,反映函式變化的快慢。一個多變數函式的偏導數,就是它關於其中一個變數的導數而保持其他變數不變。

區別:一、一元函式,可導必連續,連續不一定可導。

多元函式,偏導數存在不能保證連續。二、幾何意義不同函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示函式曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函式曲線在這一點上的切線斜率)。偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。擴充套件資料求法:當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。

如果函式 f(x,y) 在域 D 的每一點均可導,那麼稱函式 f(x,y) 在域 D 可導。此時,對應於域 D 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 D 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。

按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

曲面偏導數的幾何意義

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

引入:在xOy平面內,當動點由P(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。

在這裡我們只學習函式f(x,y)沿著平行於x軸和平行於y軸兩個特殊方位變動時,f(x,y)的變化率。偏導數的運算元符號為:∂。偏導數反映的是函式沿座標軸正方向的變化率。定義:x方向的偏導:設有二元函式z=f(x,y),點(x0,y0)是其定義域D內一點.把y固定在y0而讓x在x0有增量△x,相應地函式z=f(x,y)有增量(稱為對x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z與△x之比當△x→0時的極限存在,那麼此極限值稱為函式z=f(x,y)在(x0,y0)處對x的偏導數(partial derivative)。記作f'x(x0,y0)。y方向的偏導:函式z=f(x,y)在(x0,y0)處對x的偏導數,實際上就是把y固定在y0看成常數後,一元函式z=f(x,y0)在x0處的導數。

同樣,把x固定在x0,讓y有增量△y,如果極限存在那麼此極限稱為函式z=(x,y)在(x0,y0)處對y的偏導數。記作f'y(x0,y0)。求法:當函式z=f(x,y)在(x0,y0)的兩個偏導數f'x(x0,y0)與f'y(x0,y0)都存在時,我們稱f(x,y)在(x0,y0)處可導。

如果函式f(x,y)在域D的每一點均可導,那麼稱函式f(x,y)在域D可導。此時,對應於域D的每一點(x,y),必有一個對x(對y)的偏導數,因而在域D確定了一個新的二元函式,稱為f(x,y)對x(對y)的偏導函式。簡稱偏導數。

幾何意義:表示固定面上一點的切線斜率。偏導數f'x(x0,y0)表示固定面上一點對x軸的切線斜率;偏導數f'y(x0,y0)表示固定面上一點對y軸的切線斜率。高階偏導數:如果二元函式z=f(x,y)的偏導數f'x(x,y)與f'y(x,y)仍然可導,那麼這兩個偏導函式的偏導數稱為z=f(x,y)的二階偏導數。二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。

注意:f"xy與f"yx的區別在於:前者是先對x求偏導,然後將所得的偏導函式再對y求偏導;後者是先對y求偏導再對x求偏導.當f"xy與f"yx都連續時,求導的結果與先後次序無關。

標籤: 數的幾何 偏導
  • 文章版權屬於文章作者所有,轉載請註明 https://wzkpw.com/zh-tw/ls/6w560d.html